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1. INTRODUCTION

The absorption of infrared radiation by water vapor in

the atmosphere is of great interest sin3e it plays a prominent

role in determining atmospheric transmission to solar or laser

• radi~ tiori , and the heat balance of the lower atmosphere.W

The absorption of radiation near a line center requires

knowledge of t1~e line strength S, and the collision-broadened

half width y .  In the case of water vapor , very few accurate

measurements of half widths were available for comparison with

theoretical calculations unti l  the early 1960’ s. With the

improvement in grating spectrometers, and the advent of tun—

able lasers for infrared spectroscopy , a larger data base (2
~~~

6)

is now available for study. One of the more interesting re-

cent advances has been the application of tunable lasers for

accurate determinations of collision—induced pressure

shifts.~~~
2 1

~~ Although shift measurements for water vapor

are still sparse , it may be anticipated that this will be an

area of some continuing interest , particularly because it

furnishes a diagnostic tool for analyzing theoretical

calculations.

purpose of this paper is to make specific compari-

so~ s of two theoreti~al methods with available experimental

me~tsurements of H~ O widths  and shifts for the case of N~ (or

air)  broadening . The earliest calculations~~
7
~~ of H~O-N~~

~~~ half w i it h s were carried out by Benedict and Kaplan (BK) using

1



the Anderson-Tsao-Curnutte (ATC) theory of pressure broaden-

ing.~~~~
”
~~~ Considering that only one accurate measurement~~~

was available at the time their work was carried out , the

theoretical results, with one notable exception, have stood up

remarkably well.
N

In a comprehensive review article on microwave pressure

broadening, Birnbaum~
2
~~ has made detailed comparisons of pre—

dictions from the Anderson theory with experimental results.

In the case of water vapor he finds the agreement less than

satisfactory. However, his indictment of the theory appears

~o rest primarily on the following : (a) the theoretical half

~idths are substantially smaller than those observed by

~anderson and G~nsburg,
’8
~ and (b) the value of the N2 quadru-

~~le moment, 2.46 x lO~~’ esu—cm
1, which was used by BK

to fit the microwave measurement of Becker and Autler,’2~ is

much smaller than that obtained from other experimental

determinations .

Concerning both of these points, part of the discrepancy

is due to an error which BK made in correcting the Becker and

Autler measurement from air to N 2 broadening. This error has

been discussed in a later publication (22) by the authors, in

which they suggest that the results in Ref. (17) be taken as

valid for dry air, while results for N2-broadening should be

obtained by increasing the air widths by approximately 12%.

Our present Anderson theory calculations indicate that one

needs Q 2 3.00 x l0 2s esu—cm2 (for pure N2) to fit 
the2



-

I
Becker and Aut].er line. This is in excellent agreement with

the “test available” value, Q2 = 3.04 x 10 2 6 , as recommended

by Stogryn and Stogryn.~~
23
~ Secondly , the results of Sanderson

and Ginsburg, for both N2 and self-broadening, appear to be

anomalously high compared to all other measurements, although

no new resu’ts appear to have been reported for precisely the

transitions which they studied.

C mparison of the (corrected ) Benedict and Kaplan calcu-

lations with subsequent measurements seems to indicate, for

low J transitions, that the predictions for half widths (on

the average) tend to be smaller than the observed values by a

few percent. Some of this discrepancy could undoubtedly be

remov€d by placing less weight on the microwave line used to

calibrate the theory . Furthermore, the more recent high reso-

iution tunable laser measurements ( 10_ 15) generally appear to

lead to narrower line widths than those obtained using grating

spectroi.eters , for which somewhat uncertain slit-width correc-

tions are frequently required .

The “notable exception” referred to previously concerns

the discrepancy between the BK half widths for high J transi-

tions (J > 13) and subsequent tunable laser measurements for

such lines. As an examp].e, the V 2 band transition 15, 0, 15

F ~ 16, 1, 16, which has been extensively studied experiment-

ally , 11—1k) exhibits a measured (142-broadened ) half width of

0.0072 cm 1/atm at T 300°K. The BK calculated value is

0.032 c~~~1/~ tm, too large by a factor of L 1.4 .

3

L - • • ~~~~~~~~~~~~~~~~ • •~~~~~~~~~~~~~~~~ • •• • •
~~~~~~~~~~~~~~ 

•
~~~~~~~~

• • • .



—~~ - •
-•

The origin of the BK result is easy to elucidate. The

half width is given by y = (nv/ 2irc)a , where c is the velocity

of light, v = mean relative thermal velocity , n = perturber

density at one atmosphere pressure and temperature T , and a is

the collision cross section . For the high J transitions ,

where the long-range dipole-quadrupole interaction becomes

weak (the collisions are very non—resonant), the cross section

is dominated by short-range repulsive interactions which are

approximated by classical hard sphere scattering according to

°HS w ~~~~~ Here BK take bmjn to represent essentially the

minimum “physically believable” value of the cut-off for the

long-range dipole-quadrupole interaction. For H20-N2, BK

choose bmin = 3.2A , which is close to the kinetic-theory

collision diameter , 3.14A , as determined from P-V-T mea-

surements on H 2 0-N 2 mixtures . This immediately yields

y 0.032 cm ’/atm for T 300°K.

The experimental reaults seem to indicate that the effec-

tive value of bmjn for high J transitions must be substantially

smaller than the BK value , i.e. they suggest bmjn l.5A . The

alternative (or perhaps equivalent) explanation would appear

to be that the true “potential” at shor t separations is rather

mushy . We use the word “potential” here guardedly since it ’s

clear that the interaction at very close distances cannot be

rigorously formulated in terms of an interaction between

“molecules”.

4



That the effective value of bmin for high J transitions

might be substantially less than the kinetic collision diam-

eter is not totally unreasonable because the determination of

the kinetic diameter is heavily weighted by contributions from

low J (highly occupied) states and it therefore contains

little information concerning high J collisions for which a

geometric hard-sphere diameter is more appropriate.

In view of these considerations , one might attempt to im-

prove agreement with experiment by taking bmin = l.5A as an

empirical parameter and then using it in subsequent calcula-

tions. If one does this in the context of standard ATC

theory , one finds that the calculated width at high J is still

too large by a factor of about 1.4, due to the contribution of

the dipole-quadrupole interaction to the collision cross sec-

tion. In fact, letting bmjn 0 and determining the ATC cut-

off  parameter , b0, by the self-contained Anderson prescription

1, one finds~
25

~ tha t the half width saturates (be-

omes independent of bmin) at a value of 0.010 cm ’/atm.

~ ince the high J transitions are associated with very non-

resonant dipole-quadrupole collisions, the above difficulty

suggests that the ATC resonance functions f(k), F(k), where

k = 2ircbAE/v , decay too slowly for large values of the in-

elasticity ~E.

n this paper , we shall compare the ATC theory for widths

and shifts with a theory
(26) developed by one of the present

authors (R.W.D.) based on quantum many-body theory. Hence-

• forth we shall refer to Ref . (26) and I.

5
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Although the theory developed in I was derived using

graphical many-body techniques, the differences w~th the

Anderson theory are of a more mundane nature. In particular ,

to the evel of analysis carried out in I, both theories cor-

respond to perturbat ion developments to second order in the

intermolecular interaction. Furthermore , although the theory

in I corresponds to a complete quantum—mechanical treatment ,

noting the fact that molecules are heavy , actual quantum cor-

rectionE can be expected to be small. Also , for cases where

the lowest—order vertex corrections can be ignored in the

many-body treatment [corresponding to S2 (b ) middle = 0 in the

ATC formalism], the basic results derived in I can be obtained

much more simply using Fermi ’ s “Golden Rule ” for second-order

transition probabilities.

For practical purposes , the main differences between the

theory of I and the ATC approach are as follows : (a)  the

treatment in I rigorously conserves momentum and energy in

the collision processes (in the ATC approach both the angular

deflection and change in kinetic energy of the colliding mole-

cules are ignored), and (b )  the treatment in I includes a

Boltzmann average over the initial translational states (AT C

s Jnply use the mean relative thermal velocity). Although the

t ’eatment of points (a), (b) in the ATC formalism is usually

considered to be adequate, the justification is far from clear

for collisions close to the hard sphere limit (where rela-

tively large angular deflections may occur), and/or for colli-

6 
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dons involving large changes in internal energy (large in-

(lasticities), where the concomitant chang e in kinetic ener-

gies may also be appreciable. As will be outlined briefly

I elow, one immediate consequence of the simultaneous con-

straiiits of energy and momentum conservation , coupled with a

Boltzmann distribution of velocities , is that off—resonance

ollisions decay as a Gaussian. This is a much more rapid

ecay than obtains from the ATC formalism , and in general,

the shapes of the resonance functions 3.n the two approaches

are quite different.

The quantum theory developed in I is made tractable

through the use of the spatial Fourier transform of the multi-

pole interactions . Hencefor th, we shall refer to the theory

in I as the Quantum Fourier Transform (QFT ) treatment . In

this method , one writes the various multipole interactions as

V ( R )  = 
1 j d 3

~ V ( q )  e1a~~ , ( 1)
(2 n ) 3

where R - 

~ 2 is the molecular separation, with R3, R2 the

center-of-mass coordinates. The advantage of eqn (1) for a

quantum treatment is that the unperturbed wave functions gov-

erning translational motion are plane waves having the form

‘Vk ~~~~ 
e~~ l~~~1, 

~k ~~~~ 
e~~~2~~~2. Matrix elements of the

—1 i •?. —2
operator e — are then trivial to calculate.

Subsequent reduction , using second-order perturbation

theory , leads to the result that the probability per unit

time of encountering a collision involving a total change in

7 



internal energy AE , and with momentum transfer -hq, is propor-

tional to

= f d 3 k1 f d~k2 
~l

• 45[ck I
_c
k

+ck+a
_c
k +t

~
IE] . (2 )

here p ( ek ~~, ~~
Ck 

) are the Boltzmann translational functions
—1 —2

for molecules 1, 2, with c -112k 2/2m F 2/2m and simi—
—l

larly for . It should be noted that the quantity —hi,
—2

where a is the Fourier transform variable introduced in eqn

(1), is precisely the classical momentum transfer in the

c )llision process. The double integration in eqn (2) may be

c irried out directly using the method outlined in Appendix B

of Ref. (I); however, it is much simpler to introduce the

transformation to center—of-mass and relative coordinates via

= k + m1/ (m 1 + m 2 ) K

= — k + m 2 / (m 1 + m 2 ) 
~~~~.

The Jacobian of the above transformation is unity , and the

transformation factorizes the double integral to give

~
2K2 ~1

2 k 2
P( tlq ,AE) 

~~
- f d 3K e~~ 2M f d 3k e 8 2m

2 2
ot: — - + 2rn + AE] , (3a)

t.here Z [2 ir im1m2/ (~ 4i2 ) ] 3 , ~ = l/k BT , M (m 1 + rn2
) ,  and

m1m2/M is the reduced mass. Evaluation is straightforward

and gives

S
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P(tla,AE) = _L. 
~ ~

m 
) 1 / 2  exp [— ~m (~ E + 

.i1

;
~~~

2
)2 ]  . (3b)

/~i~ -11
2q2 2112q2

As will be discussed further in Sec. 3, the term 412q2/2m is

generally negligibLe compared to the (quantum allowed) inelas-

ticity AE. Then one obtains

P(
~tta,AE) = ....L . 

~ 
8m 

) 1/ ~ 2 exp [— ~m (~ E)
2] , (4 )

/~ 412q2 2~
2q2

i.e. the probability of a collision with inelasticity = ~E is

Gaussian. The immediate consequence of the above result is

that highly non-resonant collisions , e.g. H20-N2 collisions

for high J levels of water vapor , are given much less weight

in the QFT theory . In particular, we shall show , dow-i to

bmin l .5A , that the QFT theory for the transition 15 , 0 , 15

16, 1, 16 is very nearly equivalent to adipOle....,quad. - 0.

— For low J transitions, our results lead to essential agreement

with the Anderson theory , and this corroboration is not corn—

~1etely trivial in view of the very different resonanc e func-

tions in the two theories.

The outline of the remainder of the paper is as follows.

ifl Sec . 2, we review the ATC theory of pressure broadening

arising from multipole interactions . This is done to estab-

lish notation and also to present the generalization of the

theory to include second-order pressure shifts. The above

generalization of the ATC theory does not appear to b-~ well-

known , and in Sec . 2 and Appendix A we show tha t it € .sen-

tially amounts to replacing the ATC resonance functions f(k),

9
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F(k) by their Hu bert transforms . Then, in contrast to the

width calculation, the line shift is given by the difference

of the contributions in the initial and final radiative

states.

In Sec. 3, we show that a scaling transformation , from

the momentum transfer variable klq to the impact parameter

variable b, converts the QFT theory to ~~. form very similar in

structure to the ATC equations. In particular, the essential

modification is to replace the ATC resonance functions f(k),

F(~~), and associated Hu bert transforms ~(k), ~(k), by a modi-

fi ed set of resonance functions g(k), G(k), ~(k), ~(k).

In Sec. 4, we discuss the application of the two theories

to the spec ific problem of N 2 (or air) broadening of H20

transitions. Details of the calculations are described and

ti ~ actual numerical results are presented in Appendix B

(widths for 110 measured transitions) and Appendix C (shifts

for eight measured transitions). The results are analyzed and

some specific recommendations for further experimental s •udies

are also suggested.

10
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2. REVIEW OF ATC THEORY WITH GENERALIZATION

TO INCLUDE SECOND-ORDER SHIFTS

The half width for a radiative transition i ÷ f , is

given by (c~i’/atm)

= (~ i_) V (j ) ( 5 \1if 2nc p 2 if , J 2 ‘ ‘ ‘

2

where n = perturber density at one al mosphere prassure and

temperature T (n = n 0 2 7 3 / T ) ,  c = velocity of lignt , and v is

the m’~an relative thermal velocity given by V = [8k BT / ( i r m ) ] h / 2 ,

where m is the reduced mass. Also , in eqn ( 5 ) ,  p (J 2 ) is the

Boltzmann factor for perturber state J 2 .

For simplicity in the treatment which follows, we shall

consider the case where the ATC term S2(b) .ddl = 0. For the

case cf par ticular interest in this paper , i.e. H20-N2, this

results because the diagonal matrix elements of the (permanent)

dipole moment operator of H20 vanish. Also , independently of

the particular case, it may be rigorously shown that the

second-order treatment of S2 (b ) middle contributes nothing to

the pressure shift. This is in agreement with the conclusion

reached in Ref. (I), i.e. that the lowest—order vertex correc-

tions in the QFT theory make no contribution to the shift.

For , the ATC the ry yields

0(R) ir [b 2 + I 2bdb 5(R) (b)] , (6a)
‘ 2  b ‘‘20

or

11



0çR) nb2 El + s~
10 (b )J , ( 6 b )

with

s~~~~~ (b 0 ) = 
4~

av2bfl ~J~i’ 
l < i ll O 1ll i t l a l < J 2 l I O 2 II J~> l 2 fCk~

~ 
l< f II O lHf’> l 2 l < J 2HO 2 II J~>I2f (kf) },  (7a )

2

S~~~~ 2
(b 0 ) 

~~~2 V 2 b
fl

~ 

{
J~ j~ Nil lO l l Ii’> l 2 1< J 2 1 10 2 1 lJ~

> l 2 F(k
~o
)

~ 
1<f lI O llI f ’ > I 2 l <J 2 1l O 2 l I J~> l 2 F(kf0 ) } .  ( 7 b)

In the above equations , we have denoted various reduced matrix

elements of the dipole or quadrupole moment operators, and

the indices n = 4 , 6, 8 represent the dipole-dipole, dipole-

quadrupole, and quadrupole—quadrupole cases, respectively .

The functions f(k), F(k) are the well-known resonance func-

tions discussed and tabulated by Tsao and Curnutte,~~
20
~ and

k~ = 
2~cb (E1 — E~~, + E~ — EJI ) , (8a)

2wcb
k~0 = 

v 
0 (E u — E . ,  + E~ — EJ,) , (8b )

where the energies are in units cm ’, and similar formulas

apply to kf~ kf0 . If we use the Tsao-Curnutte definition of

the quadrupole moment reduced matrix element , the numerical

coefficients c~ are given by

c~ (t~/9) (d—d case), c~ = (L e / 4 5 )  (d—q case), c~ = ( 1/25)

(q—q case). (9)

~~~~ 12
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It should be noted that the definition of Benedict and I~iplan

for the quadrupole moment agrees with the Tsao and Curnutte

definition , but this definition is twice the value used by

Birnbaum ,~~
2
~~ Buckingham ,~~

27
~ Stogryn and Stogryn ,~~

23
~ and

the definition employedt in Ref . (I) .  Finally , the above

equations assume use of Anderson ’s “approximation number two”

for determination of the minimum impact parameter b )~ i.e. b 0
is to be determined as the solution of the implicit equation

(b ) = 1 . 
- 

( 10)0

We turn next to pressure shifts in the Anderson theory .

In the original ATC formulation , a first-order shift contribu-

tion is calculated , but the second—order shift is eliminated

through an approximation which neglects non-conunutivity of

certain quantum mechanical operators. As pointed out in I,

the first-order shift due to multipole interactions rigorously

vanishes. Although “effective ” interactions such as the in-

duction and dispersion forces can contribute in first order,

it is well_knownU8) that these forces are actually approxi-

mations to second—order (or higher—order) interactions .

t The statement following eqn (5.17) in Ref. (26) contains
a typographical error and should read

= I eb~ 
[f
6
(b)

~~,~~, 
— f

~
(b)

~~,~~
,]

For a charge iist~ ibution possessing an axis (z ’) of suf-
ficient symmetry, this agrees with the def inition used by
Birnbaum . (21)

13
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A generalization of the ATC theory to include second-

order pressure sh i f t s  has been derived by Herman ( 28)  for the

special case of induction—dispersion forces (for the interac-

tion of HCI~ with inert gas molecules) . In Appendix A , we de-

rive the general formulas for second—order shifts using

Anderson ’s original formalism. Rather similar formal expres-

sions can also be obtained as limiting cases from the theory

c4 eveloped by Murphy and Boggs ,~
29
~ and a related theory re-

cently given by Mehrotra and Boggs.~~
30
~ We should also men-

tion , in this connection , that the theory of Murphy and Boggs

is similar to the QFT theory in that a Boltzmann average over

the initial translational states is included . However , corn-

putationally ,  when used in conjunction with the classical

path method , it appears to be more cumbersome, since the double

integral over velocity and impact parameter mus t be perf ormed

numerically in the Murphy and Boggs formalism .

The results for second-order shift:s from the ATC theory

an be expressed in a form ~ery similar to the width formulas .

~ihe shift (cm ’’atm ) is givt n by

~~if ~~~~ 
p(J~~ ~~~~~ , (11)

where

= ii J 2bdL s~~~~~ (b) , (12a)

= ir b~ Sc~~~~b0 ) , ( 12b )

114 

_____

L 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



wi th

s~~~~~ (b) = 

~~
2v2bfl~ ~J~ i’ 

kjlIo1lI i > l I<J 2 I1 0 2 1I J 2> l f(k1i

— l <f ll 0 lLI f t > l 2 I<J 2It O (lJ ~> (2~ (k f)},  (13a)

C ,’
S~~~~~ (b 0) = 

~~~2 V 2 b
fl

~ 
~~~~~ < i ll o1 i’> t 2 l <J 2 ll o 2 ll J~> l 2 r1k~0

- I l < f I t O l Il ~~t > I 2 L < J 2 0 2 l I J ~ > I 2 ~~(k fo ) ) ,  ( 13b)

and k., k10, kf~ kf0 have the same definitions as given

previously.

In eqn (13), ~(k) and ~(k) are simply the Hu bert trans-

forms~~~~ of f(k) and F(k), respectively , i.e.

f (k )  Pr f (k ’) d k ’ , ( 14a)

F (k )  = 
~~ 7 

F (k ’) dk ’ ( 14b) 
H

It is also to be understood in eqn (itl ) that f(k’), F(k’) are

to be taken as even functions of k’, i.e. f(k’) f((k’~~~,

and similarly for F ( k ’) .

Some useful formulas connecting the various functions

should also be noted , viz.

F(k) = 2k’~~
2 7 k’dk’f(k’) , (l5a )

Ic

~(k) = 7 k ’Jk ’!(k ’)  
. (15b)

Ic

15
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Equations (15) are valid for the case k > 0. For k < 0 ,

F(k )  = F ( l k l )  while ~(k ) = - F ( l k l ) , i.e. f (k ) ,  F(k )  are to be

taken as even functions of i , while f (k )  and F (k)  are to be

taken as odd functions of k. That eqn (15b) is consistent

with eqn (l4a), (11th), (15a ) can be seen as follows. We take

the derivative of eqn (l5a ) and obtain

kF’(k) (n—2) F(k) — 2 f (k )  . (16) 
—

Nex t, we take the Hu bert transform of both sides of this

equation, which gives

Pr 7 k ’F ’(k ’) dk ’ = (n-2) ~(k) - 2~~(k) . ( 17)

In he numerator of the left~hand—side , we write k ’ = (k’-k) + k .

Thi~ gives

LF (~~) - F(-~~))  + k Pr 7 F ’(k ’) d k ’

= (n—2) F(k) — 2 f (k )  . ( 18)

The first term on the left-hand-side vanishes, and, by a well-

known theorem for Hu bert tran ;forms,~
3
~~ the second term

eq~als k~ ’(k), where F’(k) F(k), which gives

ki~’( k )  ( n — 2 )  F (k )  — 2?(k) . (19)

Then , by analog y with eqn (16) , and noting that F(~~) = 0 , we

immediately obtain eqn (15b).

The ATC resonance functions f(k), F(k) are sufficiently

cc Implicated that it appears to be necessary to obtain their

Hu bert transforms numerically. Such results for the dipole—

quadrupole case are presented in Sec. 4. Since the Hu bert

16



transforms are odd, they vanish at k = 0. For large k , one

can easily see tha t they must have the asymptotic form

f(k) = — 85/k (k ÷ co) , (20a)

F (k )  = — 8t~’k ( k -‘ co) , (2Db)

where = H~ 
f f (k ) d k , ~~~~~ = 

~~~

. f F(k)dk. From eqn (19) one

then obtains the result

= (~~~
) B~ ( 2 1)

which is a useful  relation for checking the numerical

calculations .

One final point to note is that we have not included the

shif t  contribution in the determination of b0. In Herman ’s

paper,(28) a cut-off prescription is recommended which appears

to be essentially equivalent to

5 ( R )  (b ) + i s c~~ (b 0 ) I  = 1.1~~~~2

We will not use this prescription for the following reasons:

(a)  the theoretical jus t i f ica t ion  is not completely obvious ,

(b )  we want to keep the correspondence with the earlier calcu-

ations of BK as straightforward as possible, (c) the shift

contribution is generally small compared to the width contri-

bution , so, for most cases , one expects rather small correc—

tions if the shif t were included in the determination of b0.
The formulas in this Section provide a complete descrip-

tion of the ATC theory of widths and shif ts , except for the

introduction of the parameter bmin employed in the earlier

17
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calculations of BK. This minimum “physically believable” -

value of the cu t— ( -ff  is used as follows : if bmj n < b~ [as

determined by eqn ( 10)]  use b0 in the calculation , otherwise

use bmin in place of b0. For the H 20-N 2 system, the depend-

ence of the results on the choice of bmin is discussed in
Sec . 4 . —

18



3. REDUCTION OF THE QFT THEORY TO ATC FORM

In Ref. (I), the QFT theory of second-order pressure

E hifts was analyzed in detail. For the case where the lowest-

ürder vertex corrections vanish [corresponding to S2(b)middle = 0

in the ATC formalism] , the lineshape function (ii ’ ÷ p )  can be

Written as

d 3k P(c
~
)(r

Pk 
+ Flj ,k)

f , (hw ) = f — — 
. (2 2)p (E

~k 
— E

~~,k — -~iw )2  + ~~~~ +

Here we are using the notation of Ref. (I). We will indicate

th~ correspondence with the more familiar ATC notation pre-

sently. In order to make such a correspondence, it is neces-

sary (also convenient) to ignore the inhomogeneous broadening

implied by eqn (22), and to replace the lineshape function by

the simple Lorentzian

f , (-nw) = r , ( 2 3 )1.1 P (c a — — ~ — - 3cw)2 + r2

where

r = < r
Mk 

+ r
P Ik ave , (2 4 )

< — 
~p ’k > ave . (25)

Here <0> ave = f d 3k p(c~ ) °k implies an average over transla-

tional states of the absorbing molecule, with p(c~) the Boltz-

mann factor. With the above approximations , r is the half

width of the Lorentzian and -A is the shift .  The obj ect A is

precisely the quantity calculated for multipole interactions

19 



in Ref . ( I ) .  Since the real and imaginary parts of the self-

energy (A
~k 

and respectively) are connected by Kramers-

Kronig relations, it is easy to see that the only essential

modification necessary to obtain F is the replacement of the

principal value denominators in equations such as (5.10),

(5.19), (B.l) of Ref. (I) by it ‘S(energy denominator). Thus

for example, eqn (5.19) of I gets replaced in the width calcu-

lation by the resonance function

/ c o

F (AE , ) = _.L_ 8iii f dE’ exp[-~mE’2/24t
2q2]q 

~ /~1 -h2 q 2 -~~

• it ó(E’ — AE~ — ~~
2 q2 

, ( 2 6 )

or

r (AE ) ~m 1/ 2  
exp~ - (AE + 

h2 q2 
) 2]  . ( 2 7 )q p 2 

~-~I 2 q 2 2~1
2 q 2 2m

The above results is essentially identical to eqn (3b)  of

the present paper. As mentioned in the Introduction , the

term -h2q2/2m , involving the square of the momentum transfer ,

is usually negligible compax ed to the inelasticity AE = (C
a

ii Il
~

— Ca ) + (c
U 

- 
~~~

1

~~ ~ The argument for this is the following.p

In the ATC theory the multipole interactions become divergent

as b + 0 and must be cut off at some minimum impact parameter

bmin~ Similarly , in the QFT approach, the multipole interac-

tions become divergent at large q. Since q and b form essen-

tially a Fourier pair, one must cut-off the multipole inter-

actions roughly according to ~~~~ l/bmjn• Thus th2q2/2m)~~1~

20
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1~~

(.~2/2m~
2 i ). Taking bmin 3A , m = 1.83 x 10 2 3  grams as

the reduc ed mass of H20-N2, and converting the energy to cm
1 ,

yields (~1
2q2/2m)~~~ = .2  cm 1 . This value is totally negli-.

gible compared to typical (quantum allowed) inelasticities ,

AE~~, for H20-N 2 collisions . It might be noted , if the term

th2
i
2/2m) is retailed in eqn (27), that the resulting theory

for widths is formally convergent at large q (the calculation

of shifts still leads to a high q divergence). However, this

c )nvergence is spurious since it occurs at values of q where

the multipole interaction is totally unphysical.

From the above argument, we henceforth replace eqn (27)

by the Gaussian formula

F (AE ) ~~ \ i / 2 
exp [- ~~ (AE ) 2 ]~~ (2 8 )q p 2 .hZqZ) 2h2q2 P

S~~’llarly , if we ignore (1i2q2/2m) in comparison to AE~ in eqn

(.22) of I, then eqn (5.20) , (5.21) of I lead to the fol—

1 wing resonance function for the calculation of shifts:

~m 1 /2
I~/ pm~ L~L / i.~i~ 2 2 14

2 ’~ 
1 / 2  

— — 
p t z

y (AE ) = 
,..m e ~~~~2 2 f e d t .  ( 2 9 )q ~ ~h
2 q 2 q 0

The functions Fq(AE p) and Yq(~ Ep) are simply Hu bert pairs,

in part icular~

F (E)dE

q p 
- 

it ‘~~ E-AE~

• t A simple derivation of the Hu bert transform of a
Gaussian may be found in Ref. (32); see also Ref. (33).

21

_ _ _ _ _ _ _ _ _ _ _ _ _



Next one has to integrate the contribution of these func-

tions ove~ ~~ . In view of eqn (5.11) of I, the shift calcula-

tion involves

L~~~ (AE~) = 
1 / d 3

a q
n g(~)

2 Yq Ep) (3la)

8 1 dq qn 2  5
_2qr~ ~ (AE ) . (31b)

0 q p

Similarly, for the linewidth one needs

M~
’
~~(AE~) 

~~_ f d 3
~ q

fl g(g)2 rq(AE 14
) (32a)

8 f dq q~~
2 e 2

~~
’c r q (AE p ) • (32b)

The meaning of the index n is the same as in Sec. 2, i.e.

ri 4, 6, 8 for the dipole-dipole, dipole-quad., and quad .-

quad. cases respectively.

In eqn (31b) , (32b) we have also retained the phenomeno-

logical convergence factor e~~X’c, which was introduced in I,

where r
~c 

bmjn• We will now eliminate this parameter in

favor of a cut—off procedure more closely related to Anderson ’s

method . To do this, we introduce the scaling transformation

q cc/b , ( 3 3 )

where, at this point , cc is an arbitrary (dimensionless) con-

stant, and the length b becomes the new variable of integra-

tion. It is also useful to eliminate ~ in the previous equa-

tions by using

= l/kBT 8/(wmv 2) , (3 4)

22
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where v is the mean relativ thermal velocity . This gives,

with AE~

M th) (A~~~) = ~ ‘~~
2 7 bdb

bAw
exp [— ~~ ~ civ

’
~~~~~ 

( 35)

~ 
32 

~
t
~~

2 7 ~ e
2

~~~~c
”

~~
O b r~

1~ ~bAw~~
bAw civ 2

• exp [— — ( M~~zj  f et dt . ( 3 6 )
it civ 0

If the factor e 2
~~

’c~~ were not present, then , as in the

Anderson theory , the above expressions are divergent at the

lower limit b ÷ 0. Here we choose to drop the phenomenolog ical

convergence factor , and to replace the lower limit simply by

b0, where , with some appropriate choice of the scaling param-

eter a, we regard b0 as an effective minimum impact parameter,

to be determined by Anderson ’s self—contained cut-off proced-

ure. Thus , in eqn (35), (36), we let

7 ~ e~~
ci
~
’c~
’b 7 bdb (37)

O b  b0 b

Finally , it is clear that the above procedure only defines an

appr oximation to the long-range contribution to the cross

section, aL R . In the spirit of the Anderson cut-off method ,

this is to be augmented by a short-range contribution ,

0S.R. = nb~~, corresponding to classical hard sphere scattering .

23



The remainder of the reduction of the QFT theory to ATC

form is now completely straightforward and the details will

not be presented here. Some helpful correspondence between

the notation in the two theories is as follows :

Ref. (I) + ATC Notation

-. f

j p ’ -
~~ i

~
iY 1 ÷

jp~ i’ or f’

The following relation involving reduced matrix elements is

also useful in the reduction :

N JII °I1~ ’> I2 = (2J 4l) kJ’IIoHJ>~
2, (38)

and it should be remembered that the definition of quadrupole

moment employed in Ref. (I) is one—half the BK definition.

The final result of this analysis is that the QFT theory

c.in be generated from the ATC equations with the following

simple replacements of numer ical constants and resonance

functions:

24
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ATC ÷ QFT

c~ f(k) + ~ ~n-2 g (k )

c” F(k) ÷ c ’ ~ ~n~ 2 G(k)

c” ~ (k )  ÷ ~~~~ ~
n

~~
2 

~ (k)

c~ i~(k) ÷ c~ ~ a’~~
2 G(k )

(3 9)

In the above correspondence, the constants c~~, for n 4 , 6 , 8

were previously given in eqn (9). Using the BK definition of

quadrupole moment , the corresponding coefficients in the QFT

theory are

c~ ~ 
(d—d case), c~ 1/900 (d—q case), c~ = 1/63000

( q—q case) .  (4 0 )

The resonance functions g (k ) , G(k )  in the QFT theory are

given by

g(k) = exp {— ~~ . ~S_~ , (4 1)

G ( k )  = 2k” 2  7 k’dk ± g k ’ ) (k > 0) • (4 2 )
k (k ’)

The functions ~(k), ~(k) are simply the Hu bert transforms of

g(k), G(k) and are given explicitly by

2 k

2 2
g(k )  - .

~~
— exp[— ~ 

&] J et dt , (43 )
~ o

25
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~ (k ) 2k~~
2 7 k’dk ’ 

~~k’ . (k > 0) . ( 4k )
k (k’)

As in the ATC formalism , g(k), G(k) are to be taken as even

funct ions of k , while g(k), G(k) are odd. It should be

noted that eqn (42), (44) are completely analogous to eqn
(iSa ), (lSb) of Sec . 2.

26 
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4 . APPLICATION OF THE THEORIES TO H20 BROADENED BY N2

The original calculations of Benedict and Kaplan were

carried out for pure rotationa~. transitions and ignoring

vibrational-rotational coupling. We have attempted some re-

finement of the calculations b’i utilizing programs developed

a: Air Force Geophysics Labora:ory which treat the vibrational-

r)tational coupling in H20 via the ~atson~
3
~~ asymmetric ro tor

H~miltonian . In the case of t:ie ground and vibrational

states, the present ca1cu1atio~ s are based on the best avail-

able constants for the Watson {amiltonian as determined by a

least-squares fit. In the cas~ of transitions involving the

v~~, v3, and 2v 2 states , becaus 3 of the existence of accidental

degeneracies between these states , we have simply performed

calculations using ground-state energy levels and eigenvec-

tors . It is doubtful  that this approximation introduces large

errors in the calculations of half-widths, however , it is cer-

tainly inadequate for the calculation of pressure shifts. On

the other hand , at present only v2 experimental shifts are

available for analysis.

In our Anderson theory calculations , we have proceeded

as BK did by choosing Q2, the nitrogen quadrupole moment, to

force a fit to th~ 5, 2, 3 ÷ € , 1, 6 microwave line studied

by Becker and Aut1er.~~
2
~ The experimental half-width is

.087 cm~~/atm at 318°K in air. From the tunable laser mea-

surements in Ref. (14) for low J transitions , one infers an

27
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air to N2 correction of ‘~
‘N 1.1045 

~
‘air’ and applied to the2

Becker and Autler result yields TN 0.0961 cm~~/atm . When
2

the difference in temperatures is taken into account , this is

in good agreement with the result obtained by Liebe and

Dil1on~~~ for the same transition 0.104 cm 1/atm at
2

300°K) . For the 112 0 (ground state) permanent dipole moment

we have taken the value~
3
~~ d1 = 1.85 x ~~~~ esu—cm ,

which is at~out 1% smaller than the BK choice. We then obtain

a fit to the Becker and Autler line if Q2 3.00  x l0 2 6  esu—cm2 .

As mentioned in the Introduction, this is in excellent agree-

ment with the “best available” value, Q2 = 3.04 x 10 2 6  esu—cm 2 ,

as recommended by Stogryn and stogryn.(23)

ifl the notation introduced by BK , eqn (7a) for the dipole-

quadrupole case may be written as

s~~~,j
(b )  (—p)’ {~~ D(i,i’) Q(J2,J~) f(k~)

+ D(f ,f ’)  Q(J 2 , J~~ f (k f ) )  , (‘45)
f J ~

wheret

ADQ = ~~ 

i~ 2 2 i  
• ( ‘4 6 )

In the above notation , the corresponding formulas (7b), (l3a),

(13b) for sc’~ (b ) , ~~~~~ (b ) ,  and S~~~~J (b 0 ) are obvious.
if ,J2 0 1 “2 1 

‘ 2

t E quation (4a )  in Ref. ( 17) cont.tins a typographical error .
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Turning now to the QFT theory , the correspondence given

in eqa (39) for the dipole-quadrupole case is equivalent to

II /
A~Q 

f(k) + A~ Q ~~
-ö-j

~ 
g(k )

— ~~~~~~~ ‘~ 6 
~~~~— “~DQ ’ g ~~~

where A~Q = ADQ t& / ( l 0 T1 ) ]~~
’ 6 , and obvious similar replace-

ments for the other resonance functions.

In app’ying the QFT theory , one is now confronted with

the problem that the scaling parameter a, which was introduced

in  order to obtain a cut-off procedure similar to Anderson ’s,

is not given aprioci, and therefore a end s up as an additional

undetermined t quantity. Two reasonable methods for fixing a

are given below .

We note from eqn (41) and (47) that the two theories may

be made identical for purely resonant collision (k ~ t~E ÷ 0)

by choosing

a = ( 1O it) ”~ 2 .3 6 7 4 9  . (4 8 )

A plot of the var.~.ous dipole-quadrupole resonance functions

for this choice 01 cc is illustrated in Fig . 1. It is obvious

from Fig . 1 that the above choice of a will require a much

larger value of Q2 in order to f i t  the Becker and Autler line .

t From eqn (35), (36), it is obvious on making the change
of variables of integration , b cib ’, db csdb’, that the
expressions for M (n)(Aw~), L

(fl)(Awp) are actually inde-
pendent of a. However, when the transition to the
Anderson cut-off procedure is made via eqn (3 7) ,  where
b0 is to be interpreted as an effective minimum impact
parameter, the results are no longer independent of a.
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Again taking d1 1.85 Debye as the H20 dipole moment , we ob-

tain a f i t if Q2 = 4 .61 x 10 26  esu—cm2. This value seems

far too high, however, we will retain it for purposes of com-

parison. We shall refer to the resul S derived from the

above choice of parameters as QFT I.

A second method of proceeding is to choose the “best

av tilable” value,~~
23
~ Q2 = 3.04 X ~~~~~ esu—cm 2 , and then to

fix a from the calibration line. This yields a = 2.79, which

is 18% higher than the previous choicc . The results derived

from this second set of parameters will be denoted by QFT II.

Our final results indicate that the difference between

line widths as calculated using the two sets of parameters is

nev~r very great. This has the positive implication that the

calculated widths are fairly insensitive to the combined

choice for (Q 2, ci) over a reasonable range, however, it also

implies to Q2 cannot be accurately determined in the present

theory . 1s pointed out in the Introduction, it appears that

the overall rms error between theory ~nd experiment at low J

(for both the ATC and QFT theories) could be reduced by placing

somewhat less weight on the Becker and Autler transition.

However, in this paper we are more interested in comparing

trends tha n obtaining a best-fit to the available data. The

latter procedure would surely require great selectivity,

ouT ing to *Vhe difference and accuracy of the experimental pro—

ced~res used to gather the data. 

~~~~~~~~~~~~~~~~~~~~~~~ 
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To complete the discussion of the calculational proced-

ures, we make the following remarks. Since most of the ex-

perimental results are confined to the temperature range 295-

~0Q°K, we have performed all calculations at 297°K. We have

also carried out the calculations for pure N2, using 30 occu-

pied N2 levels, and the rotational constant for N2 was chosen

as 2.0 cm~~ . It should also be noted that many of the quoted

experimental results are for air rather than pure nitrogen .

We have not attempted to correct for this , however , from

Ref .  ( 14) ,  one expects nitrogen-broadened widths to be approx-

imately 10% higher for low J transitions. For very high J ,

this is probably no longer true since the scattering cross

section is dominated by a115 = itbi~in~ 
Finally, in the case of

the QFT calculations, it may be noted from eqn (‘41)-(44) that

the resonance functions g(k), G(k), ~(k), ~(k) are functions

only of the parameter

K k/a = 2ircbAE/av . (49)

This results in a considerable computational simplification

because the resonance functions can be tabulated once and for

all as a function of K, and then used according to eqn (49).

The remaining dependence on ci can be lumped into the coupling

constant A~Q as indicated in eqn (47).

The results of our calculations for half-widths are pre-

sented in Appendix B where we have divided the transitions

into three distinct groups; Group Bi lines with negligible

sensitivity to letting bmjn < 3.2A, Group 82 lines with somo
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weak sensitivity to the reduction of bmin~ 
and Group B3 lines

which are strongly dependent on the choice of bmin •

For the low and intermediate J lines listed in Group Bl,

we note that the QFT and ATC calculations lead to substantial

agreement , the general trend being that the QFT widths are

smaller then the ATC widths, with maximum differences of order

5%. We also note that the QFT I results are consistently

smaller than the QFT II results, however, the differences

are typically of order 1%. Therefore, the distinction between

QFT I and QFT II will not be belabored in the discussion

whith follows. Although the overall comparison of the theo-

retical and experimental results is not completely satisfac-

tory, we note that most of the large discrepancies are ass3ci—

ated with the measurements of Ref s. (8), (9), where the ob-

served widths are consistently high compared to the theoreti-

cal values. It should be noted that the results in Ref. (9)

are for air-broadening , while the calculated widths refer to

N2-broadening.

The Group B2 lines of intermediate J-values (8 < J < 13)

exhibit the same general trends, except that they show some

sensitivity to the reduction of bmin below the BK value of

3.20A. The QFT results exhibit the greater sensitivity , due

to the Gaussian decay of the QFT resonance functions g(k),

G(k) at large inelasticities. For these transitions, we note,

if bmin is reduced to a value of l.50A , that the theoretical

widths are in poor agreement with the observed values of
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Ref. (9); however, they are in reasonably good agreement with

the measurements of Ref s. (15), (16). Of these measurements,

only one~~
5
~ is a tunable laser observation .

The Group B3 lines, involving high J values, are seen to

be extremely sensitive to the choice of bmin • In Fig. 2, we

present a plot of half-width vs. bmin for the transition

15, 0, 15 16, 1, 16. It is seen, if one is willing to

allow values of b~~ as small as l.5A , that the QFT theory

can account for the narrow measured width. The ATC theory ,

on the other hand , saturates at a value for the half-width

of 0.010 cm ’/atm .

It seems clear that no theory such as Anderson ’s (or the

QFT theory as used here), which treats the width as a sum of

tw~ independent contributions from a long and short-range

part , and which further approximates the short-range part by

cLissical hard—sphere scattering , can provide much further

theoretical understanding of the narrow lines at high J. The

argument for this is simple. In the present approaches , the

scattering cross section may be written

a = 0S. R. + aL R  = 
~~~~~ 

+ aL R  ‘ 
(50)

where , in the case of interest here , 1L.R.  arises from the

dipole—quadrupole interation.

We imagine that it were possible to calculate

exactly or to any required high order in perturbation theory .

Now a L R  is necessarily positive or zero. The best one can

hope for is that an exact cdlculation (for high J transitions)
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would give °L R  = 0. In this case, a = 1Tb
~~j n • The result of

such a calculation is also indicated in Fig. 2. It is seen

that the QFT result is virtually identical to 0L R. 0 (maxi-

mum difference of order 8%) down to bmjn l.50A .

It appears that there are essent i ally two paths toward

further progress. The first approach is simply to accept
0

bmin = l.50A as ~n empirical fact, and then to use it in all

future calculations (in place of BK ’ s value bmin 3 .2 A ) .

Our results for the Group B3 transitions indicate that this

should work fairly well, and the QET theory appears to produce

the more satisfactory results. The one rather glaring excep-

tion to this is the transition 13, 0, 13 ÷ 12, 1, 12 mea-

sured by Toth.US) Her€ the ATC theory produces distinctly

better agreement with experiment. However , the fact that both

the ATC and QI’T widths are too small at bmin = l.50A suggests

that part of the difficulty may be due to the use of ground

state energies and eigenvectors in the theoretical calcula-

t Lons. It would seem that the most crucial question is how

wall the theories will work (with bmjn = 1.50A) for lines of

intermediate J values. As stated previously, our present re-

suits for such (Group B2) transitions are rather inconclusive

in this regard .

The second (obviously more difficult) approach is to try

to formulate the detailed interaction which takes place at

— small intermolecular separations. Such a theory must account ,

at least qualitatively , for the strong repulsive exchange in-
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teractions which occur when the electron clouds overlap , and

must yield the dipole-quadrupole interaction at larger sepa-

r~ttions. Unless a “potential” to describe such effects can

be formulated semi-rigorously from first principles , we visu-

alize that the results of such a theory would largely be a

reflection of whatever parameters were initially built in to

specify the interaction.

A final point to be made in this connection is that the

QFT result given in eqn (4), i.e. the probability for a colli-

sion involving inelasticity , ~E, is Gaussian, is very general .

In particular , it assumes only conservation of energy and mo-

mentum , and a Boltzmann distribution of velocities. It can

be applied to any potential (phenomenological or otherwise)

for which the Fourier transform exists , and which can be

treated using second-o:der perturbation theory . Although both

of these assumptions run into difficulty at very close molec-

ular separations , the implication of weak collisions for high

J states seems va1~ d.

The results o our calculations of pressure shifts for

measured v2 transi ions are presented in Appendix C. The

tLeoretical calculations (from both theories) show no relation

to the experimental results for the two high J lines

15 , 1, 15 ÷ 16 , 0 , 16 and 14 , 1, 14 ÷ 15, 0, 15. No explana-

t ion for this di f f i c ulty is presently available, although one

possible interpretation is that the shift for these high J

transitions cannot be correctly calculated without treating

the short-range interactions in detail.

37

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-V

~~~~~~~~~~~~~~ VV - - 

— ..- — _- -— V



_________________  ____

For the remai~ ing low J transitions, the QFT theory gives

the correct sign of the shift for all six lines , and yields

numerically accurate values for four of these transitions.

It is also interesting to “interpret” the frequency shift in

terms of the individual level shifts of the lower and upper

radiative states. Such an interpretation is not completely

unambiguous since the determination of b0 is a joint property

of the initial and final states i , f. The results of such an

interpretation are shown schematically in Fig . 3 for the three

t V ~ansitions 8, 3 , 5 ÷ 9, L3~, 6; 6, 4- , 2 + 7 , 5 , 3 and 5 , 0 , 5

-‘- 6, 3, 4- . The results for the other three low J transitions

o Appendix C are essentially identical to the situation de-

p~cted in Fig. 3b. From Fig. 3, we note the following re-

suits: (1) in all cases the signs of the individual level

shifts are identical from the ATC and QFT calculations , (2) in

most cases the shift of the lower (ground ) state level is

larger than the up. er (v2
) state shift, (3) only in the case

of the 5, 0, 5 state is the level shift negative. Regarding

• point (2), the ATC result for the transition 8, 3, 5 9, 4- , 6

is anomalous in that the upper state shift is greater than the

lower state shift and this leads to a positive frequency

shift.

Concerning the sign of the level shif ts , it is easy to

see that the contribution to the shift of state i from a

colli sion i ÷ j ’ , 
~ 2 

-.- J~ will be positive (negative) when

• k . 0 = (2ncb 0/v) (E.
_E .,+E~ —Es,) is positive (negative). The

1 ~ 1 2 2
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dependence on the perturber states J2 ,  J~ makes a complete

analysis difficul t, however , taking into account that the ro-

tational constant for N2 is small, k~0 will tend to b~ posi-

tiv~ (negative) when (E~ — Ei,) is positive (negative). We

then consider the state i (5, 0, 5) where the theory leads

to a negative level shift. This state has strong allowed

dipole transition to the states i’ = (4, 1, 4), (5, 1, 4),

(6, 3, 4), (6, 1, 6), with the dipole line strengths given ,

respectively, by D(i,i’) = 0.3554 , 0.1774, 0.0113, 0.4-524.

The corresponding energy diff erences are (E1_E~ ,) = 100.51 ,

—74.11, —323.64, —121.91 cni’. We note that (E1
_E
~
,) is nega-

tive for three of these transitions , and , in particular , is

negative for the strongest transition. Although such argument:;

are rough, they may be useful for a qualitative understand ing

of the level shifts.

• A final quantity of interest, e.g. to meteorological ap-

plications, is the temperature dependence of the half width.

Because, to our knowledge, no accurate experimental determin-

ations of this dependence exist, it seemed unwarranted to

undertake an extensive theoretical investigation of this ques-

tion. However, of some interest here is the comparison be-

tween the predictions from tne ATC and QFT approaches.

In the case of the ATC theory , it is generally found~~
7
~

tha t a power law of the form

y (T)/y(T 0) (T0
,T)m , (51 )

adequately describes the temperature dependence. We have
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also found this to be true in the QFT theory, at least for

low J transitions (where thE choice of bmjn plays no role).

Results for the exponent , m , for four lines of relatively low

J are shown below in Table I. We see from the results in

Table I that the two theories are fairly consistent , with
• . maximum differences of order 8%. The results at low J are

• als roughly consistent witL an effect ive cross section which

is temperature independent , i.e. the prefactor nv in eqn (5)

— 1/ 2is proportional to (T) ; hence, an average effective cross

Section which is temperature independent would yield m = 0.50.

At high J , e.g. the V 2 trans ition 15, 0, 15 16, 1, 16,

we find a complicated temperature dependence , which also de-

pends sensitively on the choice of bmin~ For example, if we

choose b~~ 
z l.SOA for the above transition , we find drastic

deviations from the power law of eqn (51); the temperature

dependence of y(T) is much smaller than at low J, and the

Ander~.on theory loads to a positive temperature dependence

LcorrE sponding to m being negative in eqn (51)1 while the QFT

theory predicts a negative temperature dependence. An experi-

n enta.. investigation of this question would be interesting

but probably extremely difficult due to the narrow line width

and relatively slow temperature dependence (in going from

225°K to 350°K the ATC and QFT theories predict a change in

y of +16% and -11% respectively).

4n conclusion , we off er the following appeal for further

exper imental stud ies:
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Table I. m eqn (51).

ATC
Transition BK (Present Results)* QFT I QFT II

5,2,3 -+ 6,1,6 0.626 0.629 0.621 0.636

2,2,0 + 3,1,3 0.649 0.659 0.664 0.673

6,4,2 + l,S,3~ 0.408 0.466 0.425 0.454

1,1,0 + 2 ,2, 1 0.616 0.620 0.578 0.602

* Present results derived for 225 < T < 350°K; the BK

results were derived for 200 < T < 300°K.

t V 2 transition; all others are pure rotational transitions.
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(a) It would be valuable to use high resolution tunable

lasers to remeasure (in the v2 band) some of the low J transi-

tions studied in Ref s. (8), (9). The Sanderson and Ginsberg 
V

measurement of the 1, 1, 0 + 2, 2, 1 transition remains as a

particularly acute embarrassment to the theories. For the

low J transitions , we have generally found good agreement be-

tween the results from the ATC an~ QFT calculations , and

these are lines for which the long-range dipole-quadrupole

interaction is dominant , with very weak dependence on the

choice of b . . Drastic discrepancies between theory and ex-mm
periment for these lines can only result from the inherent

uncertainty associated with the Anderson cut-off method , or

possibly with the use of second-order perturbation theory to

descri e the scattering processes.

(b) I~ order to ascertain the effect of reducing hmjn to a

value •f 1.50A, it would be useful to make a number of high

resolution measurements of widths for transitions involving

intermediate J values , e.g. J’s in the range 9 < J < 13.

These lines, theoretically, will exhibit some distinct de-

pendence on whether one chooses b~~ 3.20A (the BK value),

or the choice bmi l.SOA wi- ich is suggested from the mea-

sur€ ments of Eng .it high J.

(c) It would be extremely useful to collect additional laser

measurements .f H20 pressure shifts. This is an area where

the differenc E between the ATC and QFT calculations can be

pronounced even at low J values. Such measurements could

help t differentiate the merits of the two approaches.
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If satisfactory resolutions of some of the above uncer-

tainties can be obtained, it would appear that the theory

presented her e can be applied with rather good confidence to

widths of H20-N2 over a wide range of J values. The calcula-

tion of shifts is more delicate, and the success of the pres-

ent calculations appears to be limi ted to low or intermediate

J transitions . Additional experimental results should delin- •

eate the range of validity.
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APPENDIX A

SECOND—ORJ)ER PRESSURE SHIFTS IN THE ANDERSON FORMALISM

Let us begin with the integral equation for the T matrix

in Anderson’s theory

T(t) 1 - (~~) J ~~ (t’) T(t’) dt ’ , (Al )

= eiH0t’/~ Hc(t) e
_
~~ 0

t’
~~ , (A2)

where H0 is the unperturbed HamiltonLtn , and Hc(t’) is the

collision Hamjltonian with the classical-path time—dependence.

Iteration of (Al) leads to the series given in eqn (49) of

Anderson ’s original paper .~
19
~ Similarly,

= T(t)t 1 + ~~ ) f T(t’)~~ ~0(t’) dt ’

(A3 )

Iteration of eqn (Al), (A3 ) to second order yields

T u r n  T(t) T~ + T1 + T2 + . . .
t~~°

T ’ u r n  T(t) 1 = T0’ + T~~’ + T 1 + . . . , (A4 )
t÷Q)

with

T0 = T~~ = 1

T1 = — T~’ = — iP , (A5)

where (in Anderson ’s notation)

P = 4 ~f Tt (t ’)  dt’ , (A6

‘+9 

-- . .-~~ 



__ _ _  - 
~~~~~~~~~ - -  -

t ’
T2 ~~~~ f dt ’ I dt” 1T

~
(t’) 

~
t
~
(t”) , (A7 ) 

V

= L._ j dt’ f dt” 
~c

(t”) ~0(t’) (A8 )

If the non—commutlvi-ty of if
~~
t’), 

~c
(t”) in eqn (A7 ), (A8)

is ignored , then by a standard trick of interchanging the

names of the dummy variables of integration , one obtains the

result of eqn (51) in An lerson ’s paper , i. e.

T2 = T ’ — 4 P2 . (A9)

Now, for the calculation of the cross Section , one re-

quires diagonal matrix elements of T2. From Anderson ’s ap-

proximation (A9) one then finds

< n I T 2 l n>  = — 4
— 4 ~ <n~PIn ’><n ’~ p In>

n ’

= — 4 ~ (<n IPIn ’> 12
n ’

= - 4 ~~ I dt e~
Wnn t t < I H ( t ) I ’~~

2

(Ala)

where w , w - w , = (E~°~ - E ’?~)/.h. If we define the

Fourier transform

I-10(w) = f dt e~~
t 1 (t) , (A l l )

then eqn (Ala) may be written

— 4 L~ < n t H  (~~ ,)t n ’> 12 . (A 12

)_



____________________________________

The correct treatment of eqn (A7 ), on the other hand ,

yields

t, .V •
<nI T2 I~

> ~ (_  L) f dt’ f e1~nflh t e1~n~n
t

<nI H0(t’)In ’><n ’IH~
(t”)In> . (A13)

The t r ick now is to introduce the inverse Fourier transform

H
~
(t) = 4~ J 

d~ H~
(w) e~~~

t. (Ai4)

Making use of this in eqn (A13) gives

<r
~ T2In> = — 1 

~ f dw ’ f <nIH (~~’)In ’><n ’~ H (~ ”)1n>
(2wFfl 2 ri~

• 7 at ’ e~ nn i~~~
’)t’ 

~~~~

‘ 

dt ” e
_I 

nn~~~~
’)t” 

. (A15)

The integration over t” yields (36)

f dt” e n n t~~~
”)t”

e
_I

nn~~~~
”)t ’ [wó (w , +w ”)  + 

~~ 
~~~~~~~~~ 

. (A16)

The t ’ integration then simply gives

f dt ’ e~~~~
’
~~~

”)t’ 
= 2 r r ó ( w ’+w ”)  . (Al7)

When the integration over ~~“ is eliminated, we obtain (with

w ’ ~~~

< n I T 2 t n >  _ L  4~ J dw <n (Hc~
&
~
s I fl t ><n t IH

c
c_w )

~
n>

. [iro(w ~~~ _ w ) + i . (Al8)
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Since H
~
(t) is Hernitian, -

, (A19)

so that

<nf T2 In> - 4 ~ I.~ <fIH~~
A) ,~~Ih1 ’

> I2

+ 

~~~, ~~~~~~~~~~~~~~~~ 

I~ <nI H
~
(w)In ’> I 2 . (A20)

A little consider~tion shows that <n~T~ 1Jn > <n I T2 In> *.

We now note that the real part of eqn (A20) is identical

to Anderson ’s result of eqn (A12) , and this gives the usual

contribution of S2(b)outer to the line width. The imaginary

term in eqn (A20) yields the second—order shift contributiun ,

and this term is precisely the Hilbert transform of the width

function. Subsequent reduction of the cross section using

the standard ATC methods then leads directly to eqn (13a) for

s~~~~~ (b).

Finally, to obtain

(b ) = 
~~
— f 2bdb s~~~ (b) , (A2l)

1 ,2  b2 b 1 ,2
0 0

we require integrals of the form

= 

~~~ ~~ 

2bdb 
~ (k

1
) , (A22)

where k1 b ~w1/V. Since

- Pr ‘~ f ( k ’) d k ’f(k~ ) - 

~E ~ k’—k .—~~ 1
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we need

1 7 2bdb Pr 7 f(k’)dk’,~z L ,n ir bAw . (A23)

O uO ~~~k’- 
1

We let k’ = bw ’/v where w ’ is the new variable of integration ,

and then reverse the orders of integration . This gives

I = 
~~~ ~ 

L f ( b~ ’ / v) bdb

~ J ,~~~~~
‘ 2b~~

2 f ~~~~~~~~~ f(bw ’/v ) . (A24)
b0 -~~~ b b

Next , we let b kv/w ’ and obtain

I = ~~~~~~ ~~ I ~~~~ 2k~~~
2 I f(k) , (A25)

-L k k

where k0 = b0u ’/v. From eqn (l5a) , this is just

I = 

~~~ ~~~~~~~~~~~~~~~~~ 

F(k0) . (A26)

Finally , multipl’ing the numerator and denominator of eqn

(A26) by b0/v , yields

~ dk F(k ) F(k• )
= i-.— 

~~ 
__________ 

i0 - , (A27)n ir k k. nb -~~~ 0 1 0  b

where k
~ o 

= b0L~w1/v. This analysis immediately yields eqn

(l3b) of Sec . 2.
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AP~ENDIX B

HALF WIDTHS FOR MEASURED N 2 (OR AIR) BROADENED H20 TRANSITIONS

The following lines show applicable values for the suc-

ceeding table. Common parameters: T 297°K , d1 1.85 X l0 18

esu—cm (ground state), d1 1.82 x 10~~ e esu— cm (v 2 state).

Anderson Theory: Q2 = 3.00 x 10 2 6  esu—cm 2 . QFT I: Q2 =

x l0 26 esu—cm2 , ~ (1Oir )”~’ = 2.3674-9. Q}~ II : Q =

3.014 x l0 2 6  esu—crt2 , ci = 2.79. Half widths in cm~~/atm .

( ) = Results of Benedict and Kaplan at 300°K; for Ref. (16),

theoretical values as quoted from Gates, et. al;~
37
~ rot =

pure rotational transition.
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GROUP Bi

Lower -~~ Upper (J, Ka~ 
Kc)

Transition ATC QFT I QFT II Experiment £ Reference

5,2,3 -
~~ 6,1,6 rot. 0.10046 0.10045 0.10050 (calibration line)

(0.090) 0.087 (Air, 318°K), Ref . (2)
0.104 (N2, 300°K), Ref. (3)

2 , 2 , 0 -
~~ 3,1,3 rot. 0.10683 0.10610 0.10629 0.095 (N 2), Ref. (‘4)(0.096) 0.111 (N ), Ref . (5)

0.111 (M~), Ref. (6)

3,2 ,1 -
~~ ‘4,1,4 rot. 0.10558 0.10379 0.10443 0.095 (Air), Ref . (7)

(0.095)

1,1,0 -
~ 2,2,1 rot. 0.113514 0.1061414 0.10845 0.18 (N2), Ref. (8)(0.102)

3,2,1 -
~ 4,3,2 rot. 0.09662 0.09555 0.09591 0.12 (N2), Ref . (8)(0. 087)

4,2 ,2 ÷ 5,3,3 rot. 0.09919 0.09792 0.09836 0.13 (N2
), Ref . (8)

(0.089)

5,3,3 + 6,6,0 rot. 0.07348 0.07063 0.07148 0.08 (Air), Ref . (9)
(0. 066)

5,3,2 -+ 6,6,1 rot. 0.08084 0.07905 0.07984 0.09 (Air), Ref . (9)
(0. 073)

• 6,3,14 -
~~ 7,6,1 roc. 0.07225 0.06982 0.07043 0.07 (Air), Ref. (9)

(0. 065)

6,3,3 -‘ 7,6,2 rot. 0.08551 0.08378 0.08464 0.07 (Air), Ref. (9)
(0. 077)

6,2,5 + 7,5,2 rot. 0.07382 0.07050 0.07132 0.08 (Air), Ref. (9)
(0. 067)

6,1,6 -
~ 7,4,3 rot. 0.08374 0.08052 0.08137 0.10 (Air), Ref. (9)

(0.07b)

7,3,5 -‘ 8,6,2 rot. 0.06973 0.06721 0.06772 0.07 (Air ) , Ref .  ( 9 )
(0.063)
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GROUP Bi (Continued)

Transition
__— 

ATC QFT I QFT II Experiment S ~eference

7,3,4 + 8,6,3 rct. 0.08920 0.08811 0.08865 0.09 (Air), Ref. (9)
(0. 080)

7,2,6 8 ,5,3 rot. 0.06865 0.06408 0.06551 0.07 (Air), Ref. (9)
(0.062)

7,1 ,7 -
~ 8,4,4 rot. 0.08412 0.07951 0.08119 0.08 (Air), Ref . (9)

(0. 076)

8,2,6 + 9,5,5 rot. 0.08356 0.07970 0.08081 0.08 (Air), Ref. (9)
(0. 075)

5,1,5 ÷ 6,2,4 V 2 0.10178 0.09963 0.10023 0.095 (N2), Ref . (10)(0. 093)

5,3 ,2 ÷ 6,4,3 V 2 0.08669 0.08498 0.08576 0.103 (N
2
), Ref. (10)

(0.080)

8,3 ,5 ÷ 9,14 ,6 V
2 0.09206 0.08990 0.09074 0.081 (N.~), Refs. (13), (114)(0.084) 0.073 (Air), Ref . (14)

9,3,6 + 10 ,4,7 v
2 0.08747 0.08157 0.08362 0.089 (N~), Ref. (14)0.081 (Air), Ref. (14)

6,1,6 7,2,5 0.09293 3.08837 0.08994 0.092 (N2 ), Refs. (13) , (14- )
(0.086) 0.085 (Air), Ref. (14)

6,4,2 7,5,3 V 2 0.07155 0.06912 0.06986 0.053 (Air), Refs. (13), ( 114)
(0.066)

6,14,3 ÷ 7,5,2 v2 0.06757 0.06483 0.06558 0.053 (Air), Refs. (13), (14)
(0.06: )

5,4,1 6,5,2 V 2 

- 

0.065~- 2 0.06272 0.06350 0.063 (Air), Ref . (13)
(0. 060)

5,4,2 6,5,1 V2 0.06391 0.061514 0.062114 1 .058 (Air), Ref. (13)
(0.059)

5,0,5 -
~ 6,3,4 v2 0.08628 0.08048 0.08233 3.098 (N2), Ref. (114)(0.080) 0.088 (Air), Ref. (14)

3,1,2 + ‘4,4,1 v 2 0 .0 9 2 6 4  0. 08698 0.08873 0.096 (N 2 ) , Ref .  ( 14)
(0. 085)

! 1 
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GROUP Bl (Continued)

Transition ATC QFT I QFT II Experiment £ Reference
4,2,3 ÷ 4,1,14 2v 2 0.09941 0.091466 0.09605 0.096 (Air ), Ref. (16)

(0.091)

3 ,2,L + 3,1,3 2v2 0.10401 0.10057 0.10194 0.083 (Air), Ref . (16)
(0.094)

÷ l,0,~ 2V~ 0.11723 0.10965 0.11186 0.101 (Air), Ref. (16)
(0.104)

3 , 0 , 3 ÷ ~ ,1,2 2v2 0.11051 0.10763 0.10854 0.101 (Air), Ref. (16)
(0. 099)

2,2 ,1 -p 2 ,1,2 2v2 0.10597 0.10288 0.10387 0.099 (Ai~), Ref. (16)(0.096)

3 ,3 ,0 -
~ 3 ,2,1 2v 2 0.09499 0.09317 0.09363 0.097 (Air), Ref. (16)

(0.084)

-
~~ o ,o,i 2v 2 0.11084 0.10263 0.10529 0.104 (Air) , Ref . (16)

(0.100)

1,1,0 + 1,0,1 2v 2 0.12340 0.11298 0.11596 0.109 (Air), Ref. (16)
(0.108)

3 ,1,2 2,2,1 2v 2 0.10559 0.10311 0.10370 0.095 (Air ), Ref. (16)
(0.095)

1,0,1 + 1,1,0 2v2 0.12340 0.11298 0.11596 0.110 (Air), Ref. (16)
(0.111)

0,0,0 + 1,1,1 2v2 0.11084 0.10263 0.10529 0.107 (Air), Ref. (16)
(0.100)

3,0,3 + 3,1,2 2v2 0.11031 0.10670 0.10773 0.105 (Air), Ref. (16)
(0. 099)

2,2,1 3 ,1,2 2V 2 0.10559 0.10311 0.10370 0.102 (Air ), Ref . (16)
(0.095)

2,1,2 -, 3,0.3 2v2 0.11051 0.10763 0.10851+ 0.104 (Air), Ref. (16)
(0.099)

4,0,4 + 14,1,3 2v 2 0.10830 0.10568 0.10648 0.108 (Air), Ref . (16)
(0. 097)
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GROUP Bl (Continued)

Transition ATC QFT I QFT II Experiment S Reference

3 ,1,2 -
~ 3 , 2 ,1 2v 2 0.10498 0.09989 0.10125 0.098 (Air), Ref . (16)

(0. 095)

2 ,1,1 -‘ 2 ,2 ,0 2v 2 0.10823 0.10344 0.10463 0.097 (Air), Ref. (16)
(0. 098)

5,1,4 -, 5.2 ,3 2v 2 0.10523 0.10284 0.10348 0.105 (Air), Ref . (16)
(0.095)

I 2 ,0,2 -
~ 3,1,3 2v 2 0.11379 0.10869 0.11016 0.101 (Air), Ref . (16)

(0.103)

3 ,1 , 3 + 4,0,14 2V 2 0.10675 0.10268 0.10401 0.092 (Air), Ref . (16)
(0. 096)

., 1 ,2 ~~2,2,1 2v 2 0.10597 0.10288 0.10387 0.105 (Air), Ref. (16)
(0.095)

* 5,~~,4 2V~ Q.101 3 1.09908 0.09981 0.097 (Air), Ref . (16)
(0.09.1)

6,1 ,5 -
~ 6 , 2 , 14 2v 2 0.102L8 0.09998 0.10072 0.0914 (Air), Ref . (16)

(0. 092)

3,0,3 + 4,1,4 2v 2 0.108514 0.10590 0.10668 0.099 (Air), Ref . (16)
(0. 098)

8,6,3 + 7,4,~ V 3 0.06601 0.06278 0.06365 0.067 (Air), Ref . (16)
(0. 060)

4,1,4 -
~ 5,0, ’ 2V 2 0.09730 0.09076 0.09283 0.089 (Air), Ref . (16)

(0. 088)

4,1,4 -. 14,2, 2v 2 3.099141 0.09466 0.09605 3.095 (Air), Ref. (.16)
(0. 090)

5,1 ,’ 2v~ 0.09996 0.09627 0.09734 0.085 (Air), Ref. (16)
(0. 090)

7,1,6 -p 7 , 2 , !. 2v
2 0.09479 0.09043 0.09191 0.082 (Air), Ref - (16)

(0.085)

4 ,2 ,~ + S , i , 1. 2V .. 0.10215 0.10003 0.10062 0.089 (Air), Ref . (16)

~ (0.092)
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GROUP Bi (Continued)

‘F rdnsit ion ATC QFT I QFT II Experiment £ Reference

7 ,2 ,5 7,3 ,4- 2v 2 0.10288 0.10007 0.10091 0.088 (Air), Ref . (16)
(0. 093)

b , 3 , 3 2v 2 0.10282 0.09954 0.10070 0 . 0 8 6  (Air ) , R e f .  ( 16)
(0.033)

-
~ 6 , ’~ , 2 v 3 0 . 0 6 3 4 1  0 . 0 6 6 1 4 9  0 . 0 6 7 3 9  0 . 0 6 9  (Air ) , Ref . ( 16)

( 0 . 0 ~~9)

~~~~~~~~~~~~~~~~~~~~ 2v 2 0 . 1 0 7 16  0 . 1 0 2 6 0  0 .104 07  0.101 (Air ) , Ref . ( 16)
( 0 . 0 9 ’ )

+ 8 , 3 , 6 V1 0 . 0 8 8 3 0  0 . 0 8 1 4 0 9  0 . 0 8 5 6 5  0 . 0 8 0  (A i r) ,  R e f .  ( 16)

I ______ ______________ 

( 0 . 0 7 7)

3 , 3 ,0 ~ V 2 0 . 0 9 4 9 9  0 .09317 0 . 0 9 3 6 3  0.091 (A i r) ,  R e f .  ( 16)
( 0 . 0 8 5)

4 , 2 , 3 + 4 ,3 ,2 2v 2 0 . 0 9 2 0 8  0 . 0 8 8 6 ~~ 0 .0 8 9 8 5  0 .084  (Air ) , R e f .  ( 16)
( 0 . 0 8 3 )

1 , 6 ,1 1> , 5 , 2 V
1 0 . 0 5 2 7 3  3 . 0 4 9 5 3  0.050 14 1 0.051 (A i r) ,  Ref . ( 16)

(0. 050)

-
~ 6,3 ,14 2V 2 0.08302 0.07957 0 . 0 8 0 5 2  0 .071  (A i r) ,  R e f .  ( 16)

( 0 .  0 7 5 )

8,5,4 * 7,14 ,3 V1 

• 

0 . 0 7 8 3 0  0 . 0 7 5 9 5  0 .0 7 6 6 8  0 . 0 7 3  (Air) , R e f .  ( 16)
( 0 . 0 6 9 )

14 ,1, 3 -
~ 5 , 2 , 2V 2 0 . 10311 0.10123 0.10177 0 . 0 9 0  (A i r) ,  Ref . ( 16)

( 0 . 0 9 3 )

8 ,4 ,~ -
~ 7 , 2 , 6 V

3 0 . 0 7 1 5 0  0 .0 6 7 5 8  0 . 0 6 8 6 7  0.081 (A i r) ,  Ref . ( 16)
( 0 .  0 6 9 )

7,5,i + 6 ,~~, 3 v , 0 . 0 6 9 3 1  0 . 0 6 5 3 8  0 . 0 6 6 3 8  0 . 0 6 9  (A i r ) ,  R e f .  ( 16)
~~ (0.064-)

— 

7,5,3 6,4,2 v1 0.07320 0.07001 0.07095 0.072 (Air), Ref. (16)
( 0 . 0 6 6 )

7,3 ,14 ÷ 7 , 4 , 3 2V 2 
0.09714 6 0.09636 0.09675 0.083 (Air), Ref. (1~~)
(0.088)
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GRUUP b L (Continued )

— 

Tra tsit ion ATC QFT I QFT II Experiment C Reference

* 7 , 2 , 6 2v 2 U.08 /6 0.081439 0.08506 0.089 (Air ), R e f .  (16) 
•

(0.0- ~3)

7 ,3 ,4 -* 6,2,5 V1 0.0’~ /87 0.096145 0.09718 0.082 (Air ), Ref. (16)
(0. 84)

6,5 ,1 -* 5,3 ,2 V 3 0.081407 - 0.08172 0.08274 0.076 (Air), Ref. (16)
(0. 070)

5 , 3 , 2 5 , 4 , 1 2v 2 
- 

0.08768 0.08635 0.08688 0.084 (Air), Ref. (16)
(0.079)

V~~~~~
4 3  6,3 ,4 V 1 0.08578 0.0821)8 0.08363 0.177 (Air ), Ref . ( i b )

(0. 07-8)

-
~~ / ,3 ,’4 Q .094 -!1 0.09338 0.09407 0.090 (Air), Ref. (16)

_ _ _-- 

o . o 8 i~J
, 1 ~~~~~~~ 

~~ 2 0 . 0 9 3 . ~2 u . 0 9 .~. 3 - 0.09201 0. 83 (Air), Ref. (16)
(0. 0814)

6 ,4,3 ÷ 6 , 3 , 4 2v 2 0.0’9’44 0.07530 0.07650 0.071 (Air), Ref. (16)
(0. ‘ ; 72 )

6,2,4 -p 5,1,5 0.10341 0.10215 0.10256 0.097 (Air), Ref. (16)
(0. 087)

1 , 4 , 4 - 6,3 ,3 v1 0.09280 0.1)9113 0.09197 0.086 (Air), Ref .  (1 )
• (o.o 79)

5,5,0 4,3 ,1 V
3 

0.0/7214 0.07506 0.07594- 0.077 (ALr), Ref. (16)
(0. 065)

6,4, + 5 ,3 ,2 V
1 

11.08912 0.08791. 0.08845 0.083 (Air), Ref. ( 16)
(0. 077)

7,2 ,5 6,0,6 V 3 0.09552 0.09165 0.09312 0.0814 (Air), Ref . (16)
(0. 079)
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G WUP B2

Tr tnsition ATC 
- 

QFT I QFT II Experiment S Reference

9,1,9 -
~ 10,2,80rot. (0.054) 0.07 (Air), Ref . (9)

b . z 3.20A 0.05816 0.05371 0.05493mm 2.50 0.056814 0.014978 0.05196
1.50 0.056814 0.049114 0.05173

9 . 2,7 -
~ 10,5,60rot. (0.067) 0.10 (Air ), Ref. (9)

b . 3.20A 0.07350 0.06902 0.07027mm 2.50 0.07335 0.06749 0.06935
1.50 0.07335 0.0674~ 0.06935

9,1 ,8 + 10.4,70rot . (0.053) 0.10 (Air), Ref . (9)
b . 3.20A 0.05611 0.05115 0.05237mm 

2.50 0.05453 0.014683 0.014896
1.50 0.05453 0.014613 0.014870

10,1,10 11,2 9 rot. (0.044) 0.08 (Air), ~f. (9)1) . 3.20k ‘ .014661 0 04304 0.04395mir, 
2.50 1 .014211 C .03623 0.03817
1.50 0.014273 0.03410 0.03700

10 ,1,9 -
~ 11,4,8 rot. (0.04~~) 0.05 (Air), Ref. (9)

b . 3.20A 0.04863 0.04-442 0.0145145nun 
2.50 0.04557 0.03827 0.040214
1.50 0.01+550 0.03669 0.03944

10,2,8 -‘
~ 11,5,7 rot. (0.057) 0.08 (Air), Ref. (9)

b . = 3 . 20A  0 .06 155  0 . 0 5 6 3 3  0 . 0 !7 7 2mm 
2.50 0.0604-8 0.05258 0.0!499
1.50 0.060148 0.05203 0.05483

3.0,2 ,9 + 11,3 ,8 rot. (0.064.) 0.07 (Air ), R e f .  (9)
b . 3.20A 0.07062 0.06552 0.06701mm 

2.50 0.070;1 0.06481 0.06658
.0.50 0.070-1 0.061+81 0.06658

11,1,10 -
~ 12 ,4 rot. (0.04~~) 0.07 (Air ), Ref . (9)

b . = ~~~~~ 0 .04 331  0 .04 - 015  0 . 0 4 0 9 0mm .50 0.03885 0.03279 0.03435
. L .5 Q  0.03856 0.0303/ 0.03290

11,2 ,9 12,5,8 rot. (0.049) 0.07 (-\ir), Ref. (9)
b . = 3 . 2 0 ~ 0 . 0 5 0 8 3  0 . 3 4 5 7 7  0 .04 713nun 2.50 0.04790 0.03937 0.04188

1.51 0.04784 0.03759 0.04103
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GRO .I P  B .? (Continued )

Trar ,~ V t IQ f l  ATC QFT I QFT II Experiment £ Reference

12 ,3 ,10 -~ 13 ,1+ ¶3 rot. ( 0 . J 6 3 )  0 . 0 5  (Air ) , Ref .  ( 9 )
b . = 3.20.~ 0.06928 0.06288 0.064-88

2 . 5 0  0 . 0 6 9 1 3  0 . 0 6 1 9 7  0 . 0 64 2 3
1.51’ 0.06913 0.06197 0.0~ 4-23

- 11,3 9 V (0.054) 0.0435 (Air), Ref. (15)
b . 3.2~~ 

2 0.05991 0.15668 0.0~ 74 9
2.51 0.05952 0.05520 0.05635

0.05952 0.05518 0.05635

1 ,1,10 10 , 2 9 V1 
(0.1 ~14) 0.035 (Air), Ref. (06)

b . = 3.2()~k 0.03320 0.03721 0.0376~-mmn 
2.51 0.03423 0.03030 0.03131
1.S~ 0.03422 0.02990 0.03110

8 , 7 , 1 ~ / , 6 , 2 V ( 0 . 0 4 2 )  0.037 (Air), Ref. (16)
IV -

- = 3 .2 0 A 1 0 . 0 1 + 4 3 0  0 . 04 153  0 . 0 1 42 1 9
2.50 0.04378 0.03982 0.04-109
1. 5 0  0 . 0 4 3 7 8  3 . 0 3 9 8 2  0 . 04 - 1 0 9

6,1 ,6 -
~ 7 , 0 , 7 2v (0.063) 0.059 (Air), Ref. (16)

b . z 3 .2 0 A  2 0 . 0 6 8 3 6  0 . 0 6 12 7  0 . 0 -  325m m  
2. -~0 0.06786 0.05912 0.0I ~81
1.50 0.06786 0.05912 0.06 L81

9,0,9 8.1 ,8 2v . (0.0~ 4) 0.038 (Air), Ref. (16)
b . 3.20~ 

2 0.04567 0.04107 0.04229mit 2.50 0.04151 0.03344 0.03575
1.50 0.01+1 7 0.03183 0.03474

8,2 ,7 - -
~ 9.1 ,8 2V ‘0.05 ) 0.045 (Air) , R e f .  ( 1 6)

h . - 3 . 2 0 A  .354 .1 0 . 0 4 - 9 4 3  0.05088mi,~ 2.50 J .053i. 1 0.04-762 0.04957
1.50 0.05373 0.04762 0.04957
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GROUP B3

Transition j A ‘C QF~1 I QFT II Experiment C Reference

15 ,0,15 - 16 ,1 16 V 2 
I 

0.0072 (N o), Refs. (1 - ),
b 3.20~t 

- 0.0 3180 0.03 78 0.03179 (13) , (14-~mm 
2.50 0.01954 0.01 341 0.01943 0.0070 (Air), Rex . (11+)
2.00 0.01307 0.01 :48 0.01256 0.0075 (Air), Ref. (11)
0.75 0.01104 0.01. 65 0.00985
1.60 0.010143 0.3C 19 0.008514
1.50 3.01029 Q.0Q !35 0.00785
1.40 0 .01028  0 . 0 0 63 0 . 0 0 7 3 1 4

15,1,1. it  ,0~ 16 V 2 Exp . results same as above
b .  3.20A 0.03181 0.02179 0.03179

ifl 
2.50 1.01954 0.0 342 0.0194.1+
2.00 1.01310 0.0 2’4 9 0.0l25~
1.75 1.01107 0.0: 367 0.0098 1
1.60 0.0104-7 0.03 3 .~3 0.008~
1.50 0.0103 1+ 0 . 0 3  ‘39 .007~ I1.40  0 .01032  0 . 0 0  68 ( - . 0 0 7 4 0

114 ,1, 4- -
~ 1~~, 0 15 V 2 0.011 (A i r ) , 3ef. (1~~)b . 3. ‘O ~ 0 .03187 0 .0 3  80 0 .03 182m iii 2. 1 0.01977 0.01 t 4 7  0 . 0  952

2 .u 0.01378 0.0L’63 0.0 282
1 . 7 - , 0.0122 1 0 . 0 0 3 9 2  0 .0~ 032
1.6j 0.01107 0.00359 0.00920
1.50 3.01154 0 . 0 0 7 8 5  0 . 0 0 8 6 7
1.4 . 0  0.01184 0 . 0 0 7 2 6  3 . 0 0 8 3 3

14 , 0 ,14 -*
~ 15 ,1 15 V2 Exp . results same uS above

b . 3.20~ 0. 3186 0.03180 0.03181mmn 2.50 0. 0975 
- 0 .0l9 ’4 6 ‘3.01951

2.00 0. 1371+ 0.01260 -3.01278
1.75 0.~~l215 1.00986 0.01025
i . 6 0  0 . 0 181 0 . 3 0 8 5 0  0 . 0 0 9 1 2
I ~0 0.0 178 0.00775 0 . 0 0 8 5 8
1. ~0 0. Oi L 7 8  0 . 0 0 7 14  0 . 0 0 8 2 3

12 ,2,11 13 ,1 12 V . 0.0185 (N2), Ref . (14)
k) . = 3.2Q~ 

- 0.03341 0.03278 0.03292 0.0171 (Air ), Reps . (13),m n 2.50 0.023914 0.0, ?33 0.02249 (14-)
2.00 0.02220 0.01 ‘01 0.01990 0.0155 (Air ), Ref. (11)
1 .75 0.0;220 0.31 00 0.01990
.60 0.0 220 0.01 30 0.01990

1.50 0.0 220 0.0L 00 0.01990
1.’40 0.1 220 ‘ 0 . 0 150 0  0 . 0 1990
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GROUP 33 (Continued)

Tran. V ition ATC QFT I QFT II Experiment C Reference

• 12 ,1,11 -p 13 ,2 12 V2 0.0145 (Air), Ref. (11)
b . 3.20k 0.03334 0.03278 0.03290 0.0170 (Air), Ref. (13)mm 

2.50 0.02344 0.02181 0.02219
2.00 0.02076 0.01768 0.01835
1.75 0.02068 (.01699 0.01779
1.60 0.020-3 8 (‘.01687 0.01779
1.50 0 . 0 2 0 6 8  3 .01686 0 .01779
1.40 0.02068 0.01686 0.01779

1~~,2 ,114 16 ,1 15 v 2 1 —— 

0.0096 (N2
) ,  Ref . (14 )

b = 3.20i 0.03194 0.03190 0.03191 0.0091 (Air), Ref. ( 14)
H i - f l  

2.50 0.02000 0.01980 0.01984 0.0110 (Air), Ref. (13)
2.00 0.01437 0.01265 0.013.’7
1.75 0.01316 0 .01 184- 0 . 0 1 2 1 9
1.60 0 . 0 1 2 9 9  0 .01122 0.011.~2
1.50 0 . 0 3 2 9 9  0 .01098  0.01136
1 .4 0  0 . 0 :2 9 9  0 .01086  0.01131• 

16 , 2 ,15 ~~ Exp . results same as above
h . = 3 . 2 0 A  0 .03186  0 .03 182  0 .03182rum 2 . 5 0  0 .01974 0 .01952  0.01956

2 . 0 0  0 .01362  0 . 0 1 2 7 9  0 .01294
1 .75  0.01185 0.01019 0 .0104 9
1.1- 0 0.01136 0 . 0 0 8 9 5  0 .0094 1
1.50 0.01126 0 . 0 0 8 2 8  0 . 0 0 8 8 9
1. ’ 0 0 .0 1125 0 . 0 0 7 7 5  0 .0 0 8 54

13 , 0 ,13 -* 12 ,1 12 
— 

0.0183 (Air), Ref. (16)
b . ~~~~~~ ( ; .0 3 2 4 7  0 . 0 3 2 0 7  0 .032 16

Ifllfl 2 . 5 0  0 . 0 2 1 3 3  0 . 0 2 0 0 3  0 .02031
2.00 0.01701 0.01375 0.01444
1.75 i .01644. 0.01156 0.01268
1.60 0 .016 143 0 .01064  0.01210
1.50 0.01643 0.01023 0.01192
.40 

j_
0.01643 0.00997 0.01187
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